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Abstract

Recently introduced technologies that automatically code a person’s gazes using webcams

show great potential for infant research. However, there have yet to be any independent

validations of these tools for typical infant-focused paradigms. We used data from a remote

study that tested 18-27-month-old toddlers (N = 61) with an anticipatory-looking task at

home. We analyzed participant videos captured in the remote setting using two webcam-based

gaze coding technologies: WebGazer and iCatcher+. Results of the remotely tested sample

show that both tools were able to capture goal-based action predictions, suggesting that

webcam-based technologies are viable for use in research involving toddlers. However, the

proportion of goal-directed anticipatory looking was lower compared to a comparable in-lab

eye-tracking sample (N = 70) for both technologies. Exclusion rates were also significantly

higher in the remote sample compared to the in-lab sample. Our findings on the outcome

differences between iCatcher+ and WebGazer were inconclusive due to a low sample size and

temporal mismatches between both coders’ gaze predictions. In addition to the empirical

findings, this work discusses future research areas that are vital to improving webcam-based

gaze coding technologies and establishing them in developmental research.
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Introduction

Analyzing infants’ gazes has been a key methodology in the toolbox of developmental

researchers. For experiments that require a low granularity of gaze predictions (e.g.,

differentiation of left vs. right looks), manually coding gazes in video frames has been found

to be a reliable measurement procedure (e.g., Fernald et al., 2008). For experiments requiring

more fine-grained measures of infants’ looks, researchers have been using specialized

eye-tracking hardware to measure coordinate-level gaze locations on computer screens (see

Venker & Kover, 2015 for an overview). Both of these methods have downsides, however:

manual gaze coding is labor-intensive and requires comprehensive training (Venker & Kover,

2015), while dedicated eye-tracking hardware is expensive and restricts testing to the lab

setting. An alternative approach is to use the webcams built into many modern devices to

automatically infer gazes with computer vision algorithms. In recent years, such automated

webcam-based gaze coding methods have been created for both adults (Papoutsaki et al., 2016;

Valliappan et al., 2020) and young children (Erel, Shannon, et al., 2022; Werchan et al., 2022).

While these tools are promising developments, they have yet to be independently validated for

commonly used paradigms in infant research. Validating these tools is an important step in

establishing them in developmental research, as it demonstrates their introduced tradeoffs and

informs researchers on how to best utilize webcam-based technologies in their experiments.

Validation attempts may also highlight possible shortcomings of these methods that need to be

addressed in further research. Once the properties of these systems are better understood, they

will make a promising addition to the methodological toolbox of developmental science,

enabling researchers to reach larger and more diverse samples in resource-effective ways. This

thesis explores the current state of webcam-based gaze coding for infant studies by classifying

different approaches, validating currently available open-source tools in an empirical study,

and highlighting important future research areas.

A note on the terminology used: For lack of unified terms, we call all acts of inferring

gaze locations or directions of any granularity “gaze coding”. For the special case in which

automatic systems infer x/y coordinates on a screen, we use the term “eye-tracking”. For the

special case in which the looking directions “left” and “right” are differentiated (manual or
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automatic), we use the term “binary gaze coding”.

A note on commercial webcam-based gaze coding platforms: In recent years, several

commercial online platforms have been introduced that offer webcam-based eye-tracking

(e.g., Goeke et al., 2017). While they aim to provide a better user experience than freely

available open-source tools, they also come with considerable costs and do not publicize their

eye-tracking algorithms. Considering these downsides, we have decided to narrow the scope

of this thesis to free open-source tools.

Theoretical Background

The Case for Webcam-Based Gaze Coding

Two kinds of gaze coding methods are common in infant research: Manual coding of

gazes by human raters and eye-tracking using specialized hardware. Under certain

circumstances, webcam-based technologies can be preferable to both of these methods.

The advantages webcam-based gaze coding brings over manual coding by human

raters are evident: If the accuracy of an automated webcam-based system is comparable to the

accuracy of human raters (c.f. Erel, Shannon, et al., 2022), the system will lead to a reduction

in coding time and more objective results.

The case for choosing webcam-based technologies over specialized eye-tracking

hardware is more nuanced, as dedicated hardware provides a substantially higher spatial and

temporal resolution on gaze inference: The webcam-based eye-tracker that reported the best

spatial accuracy for infants features an x/y deviation of 3.36°/2.67° (Werchan et al., 2022). In

contrast, Dalrymple et al. (2018) found commercial eye-trackers to have an average deviation

of 1.31° in a toddler sample. Additionally, specialized eye-tracking hardware provides high

temporal resolutions with sampling rates of up to 500 Hz, while common webcams only

support sampling rates of 30 Hz. However, specialized eye-tracking systems are expensive

and require participants to visit a laboratory for testing. As webcam-based eye-trackers are

cheaper to operate and allow for remote testing, they gain multiple advantages over in-lab

eye-tracking: (1) As testing can be performed remotely using devices present in a participant’s

home, parents can schedule testing flexibly, which makes the recruitment of larger sample
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sizes easier. (2) Webcam-based eye-tracking could enable unsupervised testing using

platforms like Lookit (Scott & Schulz, 2017) or Amazon Mechanical Turk, further increasing

potential sample sizes. (3) Using webcam-based eye-tracking can increase the demographic

diversity of samples collected in experiments. Performing studies in person not only restricts

researchers to the population that can feasibly reach the lab but also to families that can afford

to take the time out of their day to participate in in-person testing. The high cost of specialized

hardware further restricts testing to labs with a sizable budget, favoring samples from richer

countries with more established funding organizations. Webcam-based remote eye-trackers

would help researchers to more easily reach populations worldwide and enable all labs to

participate in data collection. (4) Webcam-based eye-trackers facilitate international

collaboration among research groups, as they can be adapted by all labs participating in data

collection for little cost. (5) As children can be tested at home in a familiar environment, they

are more relaxed, potentially heightening their focus on experimental tasks. Considering these

advantages, webcam-based eye-trackers could be a viable alternative when conducting

research with infants, given the experimental paradigm can tolerate the accuracy tradeoffs.

Eye-Tracking vs. Binary Gaze Coding

Webcam-based gaze coding systems can be differentiated by the granularity of their

output measure. Binary gaze coding determines whether a gaze is directed at the left or the

right of the screen. Due to the simplicity of this measure, it can be performed manually by

human coders and has been used extensively in research involving young children. Automated

solutions for binary gaze coding in infants have been created (Erel, Shannon, et al., 2022),

which lower labeling time and improve the objectivity of the labels compared to human

coders. In contrast, eye-tracking systems try to estimate the exact x/y screen coordinates of a

gaze. Due to the large value range that the coordinate output provides, human coders cannot

perform the tracking, making the usage of computer algorithms a necessity. Most of these

algorithms require a calibration procedure during initialization to account for the many

variables affecting eye-to-coordinate mapping (e.g., eye shape, distance to the camera). These

calibration procedures present a greater challenge for infant research, as young children are

not as easily instructed to focus on presented calibration points (c.f. Werchan et al., 2022).
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Under optimal circumstances, however, the resulting x/y coordinates enable fine-grained

measurements of infants looking behavior that binary coding cannot achieve.

Real-Time vs. Post-Hoc Webcam Gaze Coding

Webcam-based gaze coding systems can also be differentiated by the point in time at

which gaze inference occurs. Real-time gaze coding (also called “online”) happens

concurrently in the background on the participant’s device while the gazes are recorded.

Post-hoc gaze coding (also called “offline”) occurs on the researchers’ device after the

recording has concluded and the video footage has been transmitted. Both approaches have

their advantages and tradeoffs that inform the design of new gaze coding systems and need to

be considered when surveying technologies for infant-based studies:

Real-time gaze coding produces predictions as the experiment runs, enabling

experiment designs that react to the participants’ gaze in real-time. In the case of eye-tracking,

calibration data is also evaluated at the time of the experiment, so if the software deems the

quality of the calibration to be insufficient, it can trigger recalibrations to enable higher

tracking accuracy. Furthermore, as these technologies export already coded gaze data, data

processing includes one less step than post-hoc gaze coding. Most important, however, is the

privacy advantage that real-time gaze coding provides. If participant footage does not need to

be checked for exclusions after the experiment concludes, the participant’s webcam footage

does not need to leave the participant’s device at all. By not requiring the footage to be stored

on a separate server, this approach removes many privacy concerns when dealing with infant

video recordings.

In contrast, post-hoc gaze coding runs fully independent of the participant’s available

hardware, resulting in a more consistent coding performance across the sample. This device

independence also enables researchers to collect comparable data across different device types

like laptops, tablets, and smartphones, as it alleviates problems like performance differences

and varying compatibility for real-time gaze coding software (c.f. Werchan et al., 2022). Not

running the gaze coding on the participant’s devices during testing also reduces software

crashes caused by malfunctions in the gaze coding software, reducing the overall data loss
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from this source. Furthermore, tweaks to the gaze coding process can be made after data

collection to optimize the coding process for participant-specific properties (e.g., adjusting

video brightness). Most importantly, post-hoc gaze coders can use slower and more accurate

gaze prediction models, as the models are not required to produce gaze inferences at high

sampling rates to enable real-time feedback. Because the accuracy of webcam-based

technologies is inherently lower than specialized hardware eye-trackers, this advantage is vital

as slower but more sophisticated prediction models can narrow that gap.

An alternative gaze coding approach would be to perform post-hoc processing on the

participant’s device. This combination enables researchers to use slower and more accurate

models while keeping the privacy advantages of real-time gaze coding. We are not aware of

any existing infant-focused webcam-based gaze coders implementing this approach.

WebGazer

Papoutsaki et al. (2016) presented WebGazer, a browser-based real-time eye-tracking

software that infers a person’s gaze location based on their live webcam feed. WebGazer uses

computer vision algorithms to detect face and eye regions and then uses eye and pupil features

to infer gaze locations. To learn the relationship between these features and the x/y screen

coordinates, it relies on the generation of training data it captures using calibration points.

When a calibration point is presented, WebGazer assumes that the person is looking at the

point’s position and samples the eye features at that moment. It then combines the measures

acquired across multiple calibration points and fits a ridge regression model - with the numeric

representation of the eye’s features being considered the independent variable and the x/y

coordinates of the gaze point being considered the dependent variable. This model is then

used to calculate x/y coordinates for new frames by predicting the coordinates based on newly

captured eye and pupil features. By doing so, WebGazer achieves an average viewing angle

uncertainty of 4.17° in an adult sample using its best inference model variant. Originally, the

authors designed their software to use mouse click locations as calibration points to

continuously perform calibration and improve tracking performance as a user was browsing a

website. However, a more traditional calibration sequence can be used when using WebGazer
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as a plugin for jsPsych (de Leeuw, 2015), where multiple points are displayed for a short

duration each. While this kind of calibration is more suitable for infants than measuring

mouse clicks, the tracking quality still heavily depends on an infant’s ability to focus on the

calibration points. Furthermore, considering that WebGazer was designed for use with adults

and was only evaluated on an adult sample (Papoutsaki et al., 2016), it was previously unclear

if WebGazer is viable for infant research. Thus, Steffan, Zimmer, et al. (2023) collected data

to validate WebGazer for an infant-focused paradigm. We discuss this study in the empirical

part of this thesis.

iCatcher+

Erel, Shannon, et al. (2022) presented iCatcher+, a post-hoc binary gaze coder

designed to work with infant video footage. Given footage of an infant as input, it labels each

frame with a looking direction (either “left” or “right”) or “away” in case the child is not

looking toward the camera. iCatcher+ works without prior calibration: It utilizes a pre-trained

deep neural network trained on human-annotated data to predict the gaze location of

previously unseen video frames. This architecture leads to considerable coding accuracy:

When evaluating iCatcher+ across three human-labeled datasets, Erel, Shannon, et al. (2022)

found it to approach near human-level coding performance, making it the state-of-the-art

automated binary gaze coding technology for infants. In the empirical part of this thesis, we

evaluate iCatcher+ on a typical infant-focused looking paradigm for infants to further assess

its potential for use in real-world experiments.

Hypotheses

Steffan, Zimmer, et al. (2023) collected data in a remote setting to validate the webcam

eye-tracker WebGazer for infants in an anticipatory-looking paradigm. They evaluated

webcam-based technology by comparing its results to those of an in-lab sample tested by

Schuwerk, Kampis, et al. (2022) measured with commercial eye-tracking systems. The

authors tested whether the data gathered using WebGazer would indicate that the children

engaged in spontaneous goal-based action predictions, as the participants in the in-lab study

did. They replicated the in-lab findings in the remote sample, validating the use of WebGazer
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in remote infant studies featuring anticipatory-looking paradigms. However, they also found a

significantly higher exclusion rate in the remote sample and significantly lower mean values

on their main measure, highlighting possible limitations of webcam-based eye-tracking.

In this study, we expand on the findings presented in Steffan, Zimmer, et al. (2023) by

taking a subset of the participants and reanalyzing their video data with an additional

automated gaze-coding approach: iCatcher+. The goal was (1) to determine if iCatcher+

could replicate the findings from the original work and (2) to see how its performance

compares to WebGazer and the in-lab data. As our sample was a subset of the sample used in

the original study, we also analyzed the WebGazer output for those participants once more to

enable a more direct comparison to iCatcher+. This approach created three data sets for

gaze-coding methods spanning two participant samples: (A) The in-lab sample collected using

commercial eye-tracking systems. (B) A subset of the remote sample analyzed in real-time

with WebGazer. (C) The same subset of the remote sample analyzed post-hoc with iCatcher+.

Our hypotheses were as follows: (1) We expected to replicate the results collected with

traditional eye-tracking systems by Schuwerk, Kampis, et al. (2022) in our subset of the

remote sample using both WebGazer and iCatcher+. More specifically, we expected that the

data produced by these technologies in a remote setting would indicate that 18- to

27-month-old children engage in goal-based action prediction, operationalized as

above-chance looking toward a location that matches the outcome of an agent’s action goal

(i.e., finding the hiding agent). (2) We expected that there would be a significant difference in

the measured looking biases when comparing the in-lab sample to the remote sample (for both

webcam coders) but did not specify a directional hypothesis. Both directions were plausible:

Higher noise in the webcam-based gaze coding methods could make it harder to detect

looking biases present during testing compared to commercial eye-tracking hardware.

Alternatively, children’s focus on the task could be heightened at home due to a familiar

environment, the increased scheduling flexibility to possibly test children at their most

attentive, and the lack of a tiring trip to the lab, resulting in a clearer looking bias. When

comparing the data of the two webcam-based gaze coders from the same subset, we did not

expect a significant difference in the measured anticipatory looking behavior. (3) Following
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the findings presented by Steffan, Zimmer, et al. (2023), we expected the proportion of

excluded children to be higher in the remote sample (for both webcam coders) compared to

the in-lab study. While the data processing steps performed for iCatcher+ and WebGazer

differed in their exclusion criteria, we did not expect a significant difference in the absolute

number of exclusions between the two methods.

By evaluating these hypotheses, we aim to validate iCatcher+ as a tool for measuring

anticipatory-looking paradigms in a remote setting and provide a high-level comparison of its

performance to that of WebGazer.

Methods

As we have discussed, this study expands on the work done by Steffan, Zimmer, et

al. (2023) by taking additional measures on a subset of the tested participants and comparing it

to the original measures as well as a separate in-lab sample collected by Schuwerk, Kampis, et

al. (2022). Therefore, the present study’s methods description significantly overlaps with the

original work. If a section is mostly similar to the contents from the original publication, this

is highlighted in the respective first paragraph.

The original experiment’s data collection software is openly available on GitHub

(https://github.com/adriansteffan/manywebcams-eyetracking). Additionally, we released the

software that performs the current study’s preprocessing steps, the intermediate data files, and

the analysis scripts in a separate GitHub repository

(https://github.com/adriansteffan/psychology-thesis).

The approval of the LMU ethics board was acquired prior to testing. The procedure for

data collection was also recorded in a pre-registration for the original publication, which can

be found on OSF (https://osf.io/p3f67/)

Participants

Data collection ran from January 2022 to August 2022. Participants qualified for the

study if they were between 18 and 27 months old, were born full-term (>37 weeks gestation),

and had no reported cognitive, visual, or hearing impairments. Testing took place remotely in

https://github.com/adriansteffan/manywebcams-eyetracking
https://github.com/adriansteffan/psychology-thesis
https://osf.io/p3f67/
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the participant’s home, where a caregiver accompanied them. While data collection was a

multi-lab effort, the current study only includes children tested by the LMU lab. The reason

for this restriction is that the present study employs measures that require access to participant

webcam videos, and LMU’s recordings were the only ones accessible to us. The LMU sample

was recruited via databases provided by the city of Munich, social media postings, and

university mailing lists. Five additional labs recruited children for the LMU sample using their

own resources. Participants received a small picture book and a participation certificate as

compensation for joining the study. The in-lab sample had similar qualification criteria and

was collected in seven labs across multiple countries. Further information on the in-lab

sample can be found in Schuwerk, Kampis, et al. (2022).

The final sample that qualified for either webcam-based gaze coder comprised 61

participants aged 18-27 months (549 – 821 days, Mage = 21.38 months, SDage = 2.35 months)

contributing 235 trials (refer to the “Exclusions” part of the “Results” section for a detailed

breakdown of exclusions). The sample consisted of 36 girls (59.02%) and 25 boys (40.98%).

Places of residence included Germany (n = 45; 73.77%), the United Kingdom (n = 9;

14.75%), Austria (n = 6; 9.8%), and USA (n = 1; 1.6%). For most participants (93.44%), at

least one parent had attained an educational degree comparable to a bachelor’s degree or

higher. The parent that had achieved the higher educational degree spent 18.26 years in

schooling on average. 31.15% of participants were raised bilingually, 8.20% were raised with

a third language. 60.66% of participants were only-children, 36.07% had one sibling, and

3.28% had two siblings. Most participants were going to daycare (67.21%) and spent an

average of 29.84 hours per week there.

Sample Size Rationale

The sample size rationale for this study follows the one described by Steffan, Zimmer,

et al. (2023). We based our sample size rationale on two previously shown effect sizes: The

study by Schuwerk, Kampis, et al. (2022) that provides the in-lab data for comparison tested a

sample of 65 toddlers and found an effect size of Cohen’s d = 1.03 using a one-sample t-test of

the proportional looking score against chance level. When piloting the remote webcam-based
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version of the in-lab paradigm, we observed a Cohen’s d = 0.56 for the 20 included adults

using the same one-sample t-test on looking scores. We predicted a significantly higher noise

in our data due to the poorer accuracy of remote webcam-based eye-tracking when compared

to in-lab eye-tracking (Semmelmann & Weigelt, 2018) and an increased inattentiveness and

more movement artifacts in toddlers compared to adults (Dalrymple et al., 2018). We,

therefore, chose a conservative effect size estimate of Cohen’s d = 0.3 for our main

hypothesis. To detect this effect with a power of 0.95 and an alpha level of 0.05 in a

one-sample one-tailed t-test against chance, a sample of 122 toddlers was needed.

Determining the exact number of included participants at any specific point in time during

testing was challenging as multiple labs performed the original data collection in parallel.

Thus, n = 122 was considered the minimal sample size of included participants.

It is important to highlight that our included sample (n = 61) is smaller than the

minimum sample determined by the power analysis (n = 122). We highlight the implications

of this smaller sample size in the Discussion section.

Material and Design

Stimuli

The stimuli were also described in Steffan, Zimmer, et al. (2023). As they were

initially used in the in-lab study to pilot the ManyBabies2 paradigm, a more detailed

description can also be found in Schuwerk, Kampis, et al. (2022). Refer to files in the

repository to inspect the videos fully. The stimuli consisted of 3D animations depicting a

chasing game between two agents (chaser and chasee; Figure 1). The scene was set in a

blue-colored area featuring a fence that divided the area into an upper and lower section,

taking up 1/3 and 2/3 of the height, respectively. This fence was interrupted in the middle by

an inverted Y-shaped tunnel through which agents could travel from one section to the other.

There was a singular tunnel exit in the upper section and two in the bottom section,

symmetrically placed in the area’s left and right halves. In front of each of these tunnel exits, a

brown box with a movable lid could be found. At the start of the animation, the two agents - a

brown bear (chaser) and a yellow mouse (chasee) - were positioned in the upper section of the
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scene. All participants viewed the same four variations of the animation, each lasting 38

seconds. The trials started with a short game of tag between the two agents in the upper

section. After the chase concluded, the agents did a high five and positioned themselves side

by side in front of the tunnel entrance. The chasee entered the tunnel as the chaser watched

him closely. While the chasee was not visible, footsteps could be heard to suggest movement

through the tunnel. The chasee then emerged from the tunnel on either side (counterbalanced

between trials) and looked back at the chaser, after which the chaser raised their hand in

response. Next, the chasee jumped into the box, closed the lid, and the chaser entered the

tunnel himself. Footsteps could be heard for 4000ms (referred to as the “anticipatory period”),

after which the chaser exited the tunnel on the site the chasee was hiding. The chaser then

knocked on the box, the chasee revealed himself, and the agents performed another high five.

Randomization

Stimuli videos were balanced by two factors: The location from which the chasee

started at the beginning of the video (left L vs. right R) and the side of the box where the

chasee hid (L vs. R). The four resulting stimuli were: LL - chasee started from the left and hid

in the left box; LR - chasee started from the left and hid in the right box; RL - chasee started

from the right and hid in the left box; RR - chasee started from the right and hid in the right

box. The presentation order of these trials was counterbalanced between participants using

two pseudo-randomized orders, which participants got randomly assigned to: Order A - LR,

LL, RR, RL; Order B - RL, RR, LL, LR. Both the balancing measures and trial orders were

identical to those presented by Schuwerk, Kampis, et al. (2022).

Testing Procedure

The description of the testing procedure matches the one presented by Steffan,

Zimmer, et al. (2023). The caregivers met up with the experimenter via a video conferencing

software (e.g., Zoom). Before the experiment began, the caregiver provided informed written

consent via an online survey tool. Afterward, the caregivers were asked to fill out a

demographics questionnaire covering questions about linguistic and racial/ethnic background,

resident country, socioeconomic status, and various characteristics of the caregiver and the
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family. Following that, the experimenter explained the general procedure and provided the

caregiver with the following instructions: They were asked to place the child in front of their

computer at a distance of approximately 40cm, either on a highchair or their caregiver’s lap.

Next, the experimenter guided the caretaker in establishing suitable lighting conditions for the

experiment. In case there was a source of backlight (e.g., a bright lamp or a window), the

experimenter asked the caregiver to cover it or change the laptop’s position so that the

webcam pointed away from it. Caregivers were also instructed to adjust the webcam’s or

laptop screen’s angle so that the child’s head was centered in the webcam’s field of view. To

ensure that only the child’s gaze was being tracked, it was vital that only the child’s eyes were

visible to the webcam. Thus, the caregivers were additionally instructed to move their heads

out of the webcam’s vision range, close or obstruct their eyes, or look away from the screen

during the procedure. Subsequently, the experimenter provided the caregiver with a

personalized link to the experiment’s website and reminded them to rejoin the video

conference when they finished the online experiment. The caregiver then left the video

conference session and opened the experiment in a browser of their choosing - Google

Chrome and Firefox were recommended. The online experiment was implemented using a

modified version of jsPsych v6.3.1 (de Leeuw, 2015). This jsPsych version comes with an

implementation of WebGazer, which was used to perform eye-tracking during the experiment.

After displaying some basic instructions, the software checked if the child’s head pose

satisfies the requirements of WebGazer and visually guided the caregiver to adjust the pose if

necessary. For a head pose to be deemed satisfactory, both eyes must be detected within a

square in the middle of the webcam feed with dimensions equal to 66% of the feed’s height.

In practice, this results in an accepted distance range of 40 to 130 cm (i.e., 15.7 - 51.2in).

Following this step, the eye-tracking software administered a 9-point calibration procedure,

during which an attention-getter (a looping animation of a dancing bear along with an audio

cue) was presented at each calibration point for 3s. The calibration points were positioned as

follows (coordinates in screen percentage [width, height]): [50,50], [50,12], [12,12], [12,50],

[12,88], [50,88], [88,88], [88,50], [88,12]. We assessed the quality of this calibration twice,

once directly after the calibration and once after the stimulus presentation concluded. During



WEBCAM-BASED GAZE CODING FOR INFANTS 18

the assessment, the attention-getter from the calibration reappeared in the center of the screen

for 5s. The software then recorded the average x/y deviations of the inferred gaze point from

the screen center in pixels. Following the first check of the calibration quality, the software

played back all four stimulus videos in the participant’s assigned trial order while recording

their gaze locations. Additionally, webcam videos of participants were recorded throughout

the calibration and for each stimulus presentation. The experimental task took about 6

minutes. After completion, the experiment’s software sent the collected data to the

experimenter’s server, whereafter the caregivers returned to the video conference as instructed.

Here, they could report any issues they faced during testing and were given a debriefing on the

purpose of the study. The entire testing procedure took approximately 20 minutes.

Software Setup

The description of the software setup mirrors the one found in Steffan, Zimmer, et

al. (2023) and additionally describes the changes made to jsPsych. We used a modified

version of the jsPsych framework v6.3.1 (de Leeuw, 2015) to create a website that ran the

experiment. Our changes to jsPsych are as follows: First, we changed the calibration and

validation procedures to support animated attention-getters and sound playback, making them

more interesting to infants. Second, we modified the WebGazer extension to automatically

detect hits on predefined areas of interest (AOI). Third, we added an extension to jsPsych that

enabled recording the webcam feed during arbitrary tasks. The experiments webpage was

hosted on an Apache HTTP server (Apache Software Foundation, 2012) running on a Ubuntu

18.04 LTS (Canonical Ltd., 2018) virtual machine. Once the participant’s caregiver accessed

the website, the browser executed the experiment’s code to control the stimulus presentation,

record the webcam footage and perform real-time gaze inference. After the experiment

concluded, the browser transmitted the data to the Apache server, where the data was saved

using a PHP script (The PHP Group, 2020). We took common steps to protect the

participant’s data, such as transmitting all data over an encrypted connection using TLS and

limiting access to the hosting server to only the required lab members.
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Measures

In the experiment, we presented stimuli in which the action sequence of two agents

was manipulated to measure goal-based predictions via anticipatory looking. Our primary

measure of the goal-based prediction was a looking score, representing the proportion of

participants’ gazes towards a target and distractor during a critical time period (the 4000ms

between when the chaser enters the tunnel and the chaser exits the tunnel). The target was

defined as the box where the chasee hid, while the empty box served as the distractor. We

analyzed the data collected for each “participant x trial” combination with two webcam-based

gaze coding technologies, receiving two separate looking scores: One for WebGazer and one

for iCatcher+. We used their predictions to determine whether a gaze fell onto the target or the

distractor at multiple time points of the stimulus presentation (see the following two sections

for details per method). Only considering the looks that happened during the critical

timeframe, we calculated a looking score for each tracker as follows: #targetlooks /

(#targetlooks + #distractorlooks). This formula resulted in looking scores ranging from 0.0 to

1.0, with 0.0 indicating that the participant exclusively looked at the distractor during the

critical timeframe, 1.0 indicating that the participant exclusively looked at the target, and 0.5

indicating no preference for either. We then aggregated looking scores for both gaze coders on

a per-participant level by averaging the looking scores of a given participant over all of their

included trials, resulting in two final looking scores per participant. Finally, we compared

these looking scores to ones generated from the data Schuwerk, Kampis, et al. (2022)

collected using the same paradigm.

WebGazer Measures

During stimulus presentation, the experiment software estimated the gaze locations in

real-time, providing x/y coordinates of the estimated gaze location on the screen and a

timestamp specifying how many milliseconds had passed since the start of the specific

stimulus playback. As WebGazer performs gaze inference live on the participant’s device, the

participant’s hardware capacity dictates the maximum achievable sampling rate. Therefore,

we recorded gaze points using the maximum sampling rate available to each participant and
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saved their sampling rate for reporting and exclusions. As we computed looking scores as a

relative proportion of target looks against total looks (target + distractor), trials could be

compared even at different sampling rates. We defined two rectangular AOIs around both

tunnel exits for all stimuli videos (Figure 2). These AOIs were significantly larger than the

ones used in the in-lab study by Schuwerk, Kampis, et al. (2022). We decided to enlargen the

AOIs for our remote sample due to previously reported accuracy limitations of WebGazer:

Using an adult sample, Papoutsaki et al. (2016) estimated that a gaze prediction of WebGazer

has an area of uncertainty of about 100-200 pixels on a 1920x1080 screen in natural settings.

The preprocessing software automatically labeled gazes whose x/y coordinates fell into the

AOI on the tunnel exit where the chaser will reappear as “target” and gazes hitting the

opposite AOI as “distractor”. Gazes falling into neither AOI were tagged with “none”. While

the primary analysis used the original sampling rate determined by WebGazer for each trial,

the predictions were additionally resampled to 20 Hz to perform an exploratory comparison

between WebGazer and iCatcher+.

In addition to outputting these measures, the preprocessing software produced a video

render for each stimulus x participant combination by drawing the predicted x/y coordinate

onto the stimulus for every frame and overlaying the synchronized webcam feed onto the

upper left corner. We used these renders for a visual inspection to apply the

WebGazer-specific exclusion criteria (see exclusion criteria below)

iCatcher+ Measures

iCatcher+ exclusively worked from the recorded webcam footage after the experiment

had concluded. First, we prepared the videos for analysis by iCatcher+ by padding them to the

stimulus presentation length (thereby synchronizing the webcam footage with the stimulus

footage) and then converting them to the mp4 format with a fixed framerate. We chose a

framerate of 20 FPS for comparability, as Steffan, Zimmer, et al. (2023) found an average

sampling rate of 22Hz in their included sample for the WebGazer data. Next, the videos were

analyzed using iCatcher+ with the “–use_fc_model” parameter to enable its child face

detector. For every frame in the webcam video (every 50ms), iCatcher+ used its deep learning
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model to infer whether the child looked towards the left or the right and calculated the

confidence of its prediction. iCatcher+ also created an output render for each video,

overlaying every frame of the webcam footage with an indicator for the looking direction.

Next, the preprocessing software labeled all gazes falling towards the side where the chaser

would emerge as “target” and the ones falling towards the opposite side as “distractor”.

In addition to outputting this measure, the preprocessing software produced a video

render for each stimulus x participant combination by darkening the stimulus side that was not

looked at for every frame and overlaying the iCacher+ output video onto the upper left corner.

We used these renders for a visual inspection to apply the iCatcher-specific exclusion criteria

(see exclusion criteria below).

Exclusions

The exclusion criteria discussed here are based on those used by Steffan, Zimmer, et

al. (2023) but were adjusted to accommodate the new preprocessing pipeline by separating

general and coder-specific criteria. While coder-specific exclusions limit the comparability

between results, they maximize the available sample size for each gaze coder and allow

quantifying the data loss a specific coding method entails. Participants were globally excluded

if technical problems occurred, no experiment data was transmitted, or they did not provide

usable data for at least one trial. Technical issues included crashes due to insufficient available

hardware resources to handle real-time gaze inference, browser freezes that halted the

experiment’s execution, or other technical difficulties typical for browser-based studies.

Participants were also globally excluded if there was an experimenter error or it was revealed

after testing that they did not meet all of the study’s inclusion criteria. We first performed a

coder-agnostic manual examination of the webcam footage recorded during the stimulus

presentation for the remaining participants. Trials were excluded if (1) the caregiver interfered

with the procedure (talking to their child or pointing to the screen), if (2) the toddler was

inattentive for more than 50% of the stimulus runtime, or if (3) the webcam feed originated

from a second webcam and did not show the infant. If these rules left a participant with no

more included trials, that participant was considered to be globally excluded. Lastly,
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coder-specific rules were applied both automatically and through manual checking. If these

rules left a participant with no more included trials, that participant was considered to be

excluded for that specific gaze coder.

WebGazer Exclusions

Trials were excluded automatically from the WebGazer data if (1) they were missing

WebGazer tracking data or if (2) the sampling rate of ganze inference provided by the device

was lower than 10 Hz. We justified this cut-off at 1/3rd of the maximum sampling rate of

standard consumer webcams (30 Hz). Our pilot demonstrated that most participants with

sampling rates lower than 10 Hz had very weak hardware, resulting in refresh rates of 1-2 Hz.

Comparable studies by Yang and Krajbich (2021) used a cut-off of 5 Hz, but did not explain

the reasoning behind this value. After automatic exclusions, all renders were manually

checked and excluded if (1) WebGazer tracked the caregiver’s gaze or (2) the visual inspection

indicated that the inferred gaze point deviated strongly from plausible locations based on the

webcam footage. This mismatch could occur if the visual properties of the environment were

suboptimal, the gaze point froze at a location even though the toddler kept moving their eyes,

or the calibration quality was poor. Trials were also excluded for reason (2) if the footage

stemmed from a different webcam than the one WebGazer was using and the plausibility was

impossible to check from the viewing angle provided.

iCatcher+ Exclusions

No automatic exclusions took place for the iCatcher+ data. The renders created for

iCatcher+ were manually checked and excluded if (1) the webcam video feed did not stem

from the front-facing camera (preventing iCatcher+ from inferring gaze direction) or if (2) the

face detector of iCatcher+ failed to detect an infant face in the footage for more than 50% of

frames.

Statistical Analysis

We limited our statistical analyses to those that aid in comparing WebGazer,

iCatcher+, and the in-lab sample. More elaborate analyses (e.g., WebGazer sampling rate, the
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effect of age on looking score) of the complete sample tested using the same procedure can be

found in Steffan, Zimmer, et al. (2023). We carried out all statistical analyses in R (version

4.2.2, R Core Team, 2021).

To test if our webcam-based gaze coder data indicates that participants anticipated the

goal-directed action outcomes, we performed a one-sample t-test to test above-chance looking

scores for both WebGazer and iCatcher+. Next, we tested if the looking scores differed

between the in-lab and the webcam-based samples and if the looking scores differed between

iCatcher+ and WebGazer. As data for the methods “iCatcher+” and “WebGazer” stemmed

from the same sample while the in-lab data originated from a different one, integrating these

into a singular model with “method” as a factor would introduce undesired biases. We,

therefore, tested this hypothesis by performing three pairwise comparisons using t-tests on the

looking scores between all three gaze-coding methods (paired t-test for WebGazer and

iCatcher+, Welch two sample t-tests for in-lab and each webcam coder). Similarly, we tested

the relationship between the method and the exclusion rate by performing three pairwise

comparisons between the three methods’ exclusion rates. We computed a Chi-square test on

the 2 (method A vs. method B) x 2 (percentage included vs. percentage excluded) contingency

tables for each pair.

In addition to the confirmatory analyses, we performed further analyses on the data

generated from the webcam-based sample. First, we validated WebGazer’s tracking quality by

comparing the data generated during the two calibration quality assessments (right after

calibration and after stimulus presentation). Although the absolute deviation values are

difficult to interpret due to the missing ground truth regarding the gaze estimation, comparing

the values at both assessment time points per participant can estimate the deterioration of

eye-tracking quality. To compare the two validation time points for a deterioration of tracking

quality, we performed a two-tailed t-test for paired samples on the mean deviation in percent

for both the x and y coordinates. Second, we validated iCatcher+ by making it compute gaze

predictions on the webcam footage captured during the calibration sequence (27s). We then

isolated the time points when a clear side was indicated (6s to 15s: the attention-getter was on

the left half of the screen; 18s to 27s: the attention-getter was on the right half of the screen)
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and calculated the proportion of iCatcher+ predictions that fell into the expected side of the

calibration video. Third, we aimed to quantify the degree to which WebGazer and iCatcher+

agreed in their inferred looking directions. To make a comparison between iCatcher+ and

WebGazer possible, we transformed the resampled WebGazer data by tagging data points

according to the side of the screen they fell into (right: x <= 0.5 * stimulus width; left: x > 0.5

* stimulus width). We then compared the predictions from iCatcher+ with the transformed

WebGazer data in three timeframes: (1) the anticipatory looking period; (2) the period starting

when the chaser exits the tunnel and stopping when the video ends (3); 1 and 2 combined.

Additionally, all timeframes were compared in two ways: (A) considering all time points; (B)

considering only the time points in which WebGazer indicated an AOI hit. Considering both

WebGazer and iCatcher+ as raters and interpreting each participant x stimulus x timepoint

combination as a single rating, we computed Cohen’s kappa for all 3 (timeframes) x 2

(aoi-only vs. all) = 6 conditions. Additionally, we examined the consistency of looking scores

assigned to participants between the two gaze coders by calculating the intra-class correlation

using a two-way mixed effect model for single rater (ICC(3,1)).

Results

Anticipatory Looking Behavior

A descriptive overview of looking scores per gaze coder and trial can be seen in

Table 1. For WebGazer, the mean relative looking time toward the location that matched the

outcome of the chaser’s action goal (measured as the looking score, M = 0.60, SD = 0.17) was

significantly higher than chance level (0.5), M = 0.60, 95% CI [0.55,0.65], t(47) = 4.05,

p < .001, Cohen’s d = 0.58, indicating that the participants did anticipate the goal-directed

action outcome. Similarly, for iCatcher+, the mean relative looking time towards the target

location (M = 0.62, SD = 0.14) was also significantly higher than chance level (0.5),

M = 0.62, 95% CI [0.58,0.65], t(57) = 6.34, p < .001, Cohen’s d = 0.83, indicating that the

participants did anticipate the goal-directed action outcome. In the in-lab sample (Schuwerk,

Kampis, et al., 2022), participants also exhibited above chance looking towards the target

location t(69) = 8.80, p < 0.001, leading to a mean looking score of 0.73 (SD = 0.22) and an
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effect size of Cohen’s d = 0.66.

Looking Score Difference Between Methods1

The mean looking scores per coding method are visualized in Figure 6 .When

comparing the looking scores of the in-lab sample to the total included sample for WebGazer,

there was a significant difference in favor of the in-lab sample DM = 0.12, 95% CI

[0.05,0.19], t(114.37) = 3.35, p = .001 with an observed effect size of Cohen’s d = 0.60,

[0.22,0.98]. When comparing the looking scores of the in-lab sample to the total included

sample for iCatcher+, we also found a significant difference in favor of the in-lab sample

DM = 0.10, 95% CI [0.04,0.17], t(118.35) = 3.22, p = .002. The estimated effect size for this

difference was Cohen’s d = 0.55, [0.19,0.91]. When comparing the looking scores of

WebGazer and iCatcher+ (paired - only participants included for both trackers were

considered, n = 45), no significant difference was found MD = 0.02, 95% CI [�0.04,0.08],

t(44) = 0.78, p = .441, Cohen’s d = 0.15, [-0.23,0.53].

Exclusions

LMU tested a total of 86 participants in the remote setting. From these, we excluded 4

for being outside the allowed age range, 2 for being born prematurely, 1 for having no normal

eyesight, 1 for experimenter error, and 15 for providing no data due to technical difficulties.

On a trial level, we excluded 1 trial for missing data, and a further 16 after our manual

inspection found the participant to be inattentive for more than 50% of stimulus presentation.

These trial exclusions resulted in 2 additional participants being excluded, as they provided no

more usable trial data. In total, 109 trials (31.69%) and 25 participants (29.07%) were

globally excluded from the remote sample. For the in-lab sample, 8 out of 78 tested

participants (10%) were excluded due to problems with data collection (n = 2) or early

termination of the experiment (n = 6; Schuwerk, Kampis, et al., 2022)

1 Due to the non-orthogonal combination of dependent and independent samples across methods (icatcher and

webgazer both stem from the same sample, the in-lab data comes from a second sample), it was not possible to

compute all 3 methods in a single model. Thus, multiple pairwise comparisons were performed using separate

t-tests.
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Webgazer Exclusions

From the globally included remote sample, we excluded 3 trials due to missing

WebGazer tracking data (technical difficulties), leading to 1 participant being fully excluded.

A further 30 trials were automatically excluded for exhibiting a sampling rate < 10 Hz,

leading to 7 more participants being excluded from the analysis. During visual inspection, we

excluded 2 participants, along with their 8 trials, as WebGazer was tracking the parent’s gaze.

A further 33 trials were excluded during visual inspection for exhibiting poor tracking quality,

leading to 3 participants being fully excluded. For the WebGazer sample, 13 participants

(15.12%) and 74 trials (21.51%) were excluded in addition to the global exclusion, leaving an

included sample of 48 participants (55.81%) and 161 trials (46.80%).

iCatcher+ Exclusions

From the globally included remote sample, we excluded 2 participants and 8 trials due

to the wrong webcam being recorded during stimulus playback. During visual inspection, we

excluded a further 7 trials, as no face was detected for at least 50% of the stimulus

presentation, leading to 1 more participant being fully excluded. For the iCatcher+ sample, 3

participants (3.49%) and 15 trials (4.36%) were excluded in addition to the global exclusions,

leaving an included sample of 58 participants (67.44%) and 220 trials (63.95%).

Exclusion Analysis

When comparing the exclusion rates of WebGazer and the in-lab sample, we found a

statistically significant difference in favor of the in-lab sample, c2(1,n = 164) = 21.68,

p < .001, meaning the in-lab sample showed significantly fewer exclusions. When comparing

the exclusion rates of iCatcher+ and the in-lab sample, we also found a statistically significant

difference in favor of the in-lab sample, c2(1,n = 164) = 10.61, p = .001, meaning the in-lab

sample showed significantly fewer exclusions. No significant difference was found when

comparing the participant-level exclusion rates of WebGazer and iCatcher+:

c2(1,n = 172) = 1.99, p = .158. However, when comparing the exclusion rates of WebGazer

and iCatcher on a trial level, we found that WebGazer had a significantly higher trial exclusion

rate compared to iCatcher+ c2(1,n = 688) = 19.79, p < .001. Refer to Table 2 for an
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overview of included trials per technology.

WebGazer Validation

All values reported are percentages relative to the screen’s width and height. Across all

calibration quality assessment trials of the included WebGazer sample, we found a mean

deviation of M = 11.15% (SD = 11.77%) for x coordinates and a deviation of M = 13.75% (SD

= 18.89%) for y coordinates. When comparing the validation time points, we found no

significant deterioration in tracking quality between the two time points for either coordinate

(x: M = 1.79, 95% CI [�2.32,5.90], t(45) = 0.88, p = .385, Cohen’s d = 0.13; y: M = 6.86,

95% CI [�0.58,14.29], t(45) = 1.86, p = .070, Cohen’s d = 0.27). This result indicates that

the tracking quality did not deteriorate significantly during stimulus presentation.

iCatcher+ Validation

During the analyzed parts of the calibration sequence (6s to 15s; 18s to 27s), the

inferred looking side matched the side where the attention-getter was displayed 95.86% of the

time. A one-sample t-test testing for an average bias towards either side across all analyzed

time points in the calibration sequence was not significant, M = 0.50, 95% CI [0.49,0.50],

t(16,173) =�1.10, p = .271. In contrast, when considering all looks across the stimuli

videos, 53.24% of gazes fell towards the right side of the screen, even though only 50.45% of

the included trials featured right-targeted stimuli. We found this bias to be significant when

using a one-sample t-test against 50% right looks M = 0.53, 95% CI [0.53,0.53],

t(155,990) = 25.61, p < .001.

Agreement Between WebGazer and iCatcher+

The scores for Cohen’s kappa can be seen in Table 3. The highest agreement (Cohen’s

k = 0.65) could be witnessed when only considering the time after the chaser exited the tunnel

and only comparing times when WebGazer hit an AOI, indicating substantial agreement. The

lowest agreement (Cohen’s k = 0.08) could be seen when only the anticipatory period was

considered and all time points were compared, indicating no agreement to slight agreement.

The ICC(3,1) score (two-way mixed effect model for single rater) rating for participants
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looking scores was 0.20 (CI: [-0.10, 0.46]), indicating poor consistency.

Discussion

This study validated the use of two open-source gaze-coding methods with infants in a

remote setting for an anticipatory-looking paradigm originally designed for commercial

eye-trackers in a lab environment (Schuwerk, Kampis, et. al, 2022). We analyzed a subset of

the data collected by Steffan, Zimmer, et al. (2023) using both WebGazer and iCatcher+ to

measure anticipatory-looking behavior and compared the results with each other and to those

of an in-lab study. Both gaze coders yielded results that replicated the in-lab findings,

suggesting that both technologies can be used to incorporate eye-tracking into online studies

designed for infants. Both tracking performance and inclusion rate were significantly higher in

the in-lab sample, while no difference between both webcam gaze coders was found. Low

agreement scores between WebGazer and iCatcher+ indicate lacking reliability and suggest

that further investigations are necessary.

Goal-Based Action Prediction

We found that 18- to 27-month-olds engage in above-chance looking towards the

location that matches the outcome of an agent’s action goal in our remote sample, regardless

of whether we analyzed the data with WebGazer or iCatcher+. Both webcam-based methods

witnessed goal-based action predictions of the participants in the remote sample, thereby

replicating the findings of Schuwerk, Kampis, et al. (2022) that were obtained with

commercial in-lab eye-tracking hardware. Thus, we argue that WebGazer and iCatcher+ can

both be used to assess children’s goal-based action predictions in a remote online setting.

Also, these results are consistent with previous literature that suggested that web-based testing

with children can yield comparable results to in-lab sessions (Chuey et al., 2022; Chuey et al.,

2021; Prein et al., 2022; Schidelko et al., 2021).

Comparing Performance of Online vs. In-Lab Gaze Coding

Mean looking scores towards the target were significantly higher for the in-lab sample

than for the online sample, regardless of whether we analyzed the data with WebGazer or
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iCatcher+. This difference suggests that there are limitations to remote webcam-based gaze

coding. We agree with Steffan, Zimmer, et al. (2023) that this difference is likely an artifact of

the reduced accuracy of webcam-based approaches compared to specialized in-lab

eye-tracking hardware. However, we observed this difference across two different

webcam-based gaze coders on the same sample, while the mean looking scores of these did

not differ significantly from each other. Thus, we need to consider two additional causes for

the lower mean looking score inherent to the sample, other than the lower tracking

performance of webcam-based methods: The remote setting and cohort effects. While we

previously assumed that the familiar setting would positively affect task focus, the remote

setting might have introduced additional distractors in the children’s environment, lowering

their ability to focus on the task and reason about the actors’ goal-based actions. This

reduction would have decreased the effect that we would be able to measure. Another

possibility is that the cohort generally exhibited less goal-based action prediction. Reasons for

such cohort effects can be varied and are usually difficult to capture. One possible explanation

for this difference could be the testing period for the webcam sample that ran from January to

August 2022. Harsh restrictions due to the Covid-19 pandemic likely changed the daily life of

the children in the remote sample, e.g., leading to increased screen exposure, fewer

interactions with peers and other adults, and a change in caretakers’ behavior due to

pandemic-related stress. These changes could have possibly reduced understanding of actors’

actions and goals or the ability to focus on the stimulus material, lowering the effect we were

able to measure in our study. Even though we estimate the influence of these effects to be

minor, the non-difference we found between two gaze coding technologies with

fundamentally different underlying prediction models heightens the relevance we assign to

effects other than lower tracking performance. A design that tests all technologies

simultaneously on one sample would be required for a finer-grained comparison of in-lab

eye-trackers and the discussed webcam-based approaches.

Comparing Exclusion Rates of Online vs. In-Lab Gaze Coding

We confirmed our hypothesis that the proportion of participants contributing usable

data was higher in the in-lab sample compared to both WebGazer and iCatcher+. The
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difference in exclusions between the in-lab and the remote sample can be attributed to four

sources: (1) unavoidable technical problems, (2) avoidable technical problems, (3) avoidable

human error, and (4) gaze coder specific issues. (1) Unavoidable technical problems are a

staple of online testing, as researchers have limited control over the user’s device. While

participants can be instructed to close unrelated programs and attain a stable internet

connection, the possibility of device crashes and network failures still exists. (2) Avoidable

technical problems stem from errors in the experiment’s software, like failures to work around

the quirks of certain browser versions or traditional bugs that cause the software to misbehave

in edge cases. Web-based remote studies suffer greatly from these issues, as the experiment’s

software must run in various technical environments. Researchers can mitigate these issues by

employing a controlled development process and performing extensive tests on the

experiment’s software under varying conditions. Both kinds of technical errors likely

happened in our testing (e.g., crashes while the experiment was running), but we cannot

quantify these categories due to a lack of error reporting by our software. (3) Avoidable

human errors occur when data is lost due to an incomplete definition of the testing procedure

or participants not adhering to the testing procedure. Our study involved various examples of

these failures: We did not specify that parents needed to disconnect any additional webcams

before testing, and caretakers often did not wait for the software to complete the data upload

before closing their browsers. Researchers can mitigate these issues by testing their

instructions in pilot studies and making it easier for participants to follow the procedures

correctly (e.g., we could have altered our software to display a clear upload status). (4) Gaze

coder specific issues arise when a participant cannot be analyzed using a particular gaze

coding technology. For WebGazer, these issues could occur when participants were

unattentive during WebGazer’s calibration process, thereby heavily degrading their tracking,

or when the participant’s hardware was too weak to handle gaze inference at a certain

sampling rate. For iCatcher+, these occurred when the software’s face detector failed to detect

an infant’s face in the video. These issues are mostly unavoidable, so researchers must

carefully survey available gaze coding solutions and consider the potential exclusions in

deciding which technology to incorporate into their studies. In our study, gaze coder specific
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issues made up the minority of the excluded participants for both, suggesting it might be more

important to focus on points (2) and (3) to maximize the included sample effectively. The high

exclusion rate in the remote sample is consistent with previous web-based eye-tracking studies

featuring infants using a commercial eye-tracking platform (52% in Bánki et al., 2022) and

adults using automated gaze coding technologies (62% in Yang & Krajbich, 2021; 66% in

Semmelmann & Weigelt, 2018). The higher exclusion in remote studies suggests that a larger

initial sample needs to be collected compared to in-lab studies to attain the same included

sample size. However, as remote web-based studies make testing more flexible and

time-efficient compared to in-lab studies, achieving the same included sample might still be

easier under certain conditions.

WebGazer Validation

While objective measures for WebGazer’s accuracy were not obtainable in our setting

due to the missing ground truth, comparing data from the two calibration quality assessment

trials for WebGazer indicated that tracking quality remained consistent across stimulus

presentation. However, these results need to be interpreted carefully. As we tested for a

non-difference, we needed adequate power to be confident in the test result. Performing a

power analysis on the paired t-test using alpha = 0.05, a power of 0.95, and our sample size of

46 (participants that provided valid validation data for both time points) reveals that the effect

size of the difference would need to be at least Cohen’s d = .49. Thus, our test would not have

been able to detect small to medium-sized deteriorations of tracking quality. Steffan, Zimmer,

et al. (2023) found no evidence for quality deterioration with a larger sample size, but the lack

of a ground truth regarding the looking location still limits the interpretability of the validation

trials. While it is likely that children focused on the attention-getter, there is no objective data

on what percentage of looks did end up falling toward the middle of the screen. Furthermore,

a possibility remains that tracking quality could have worsened during stimulus presentation

but improved by the time the second quality check happened. This fluctuation would have

been impossible to detect with our setup. One solution for these kinds of scenarios can be

found in the LabVanced platform (Goeke et al., 2017), which performs continuous monitoring

of face detection features and adjusting calibration if necessary.
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iCatcher+ Validation

When validating iCatcher+ using the webcam videos collected during the calibration

procedure, the vast majority of inferred gaze directions matched the side of the

attention-getter. These findings indicate that iCatcher+ performs well in scenarios where a

clear looking direction is to be expected, such as when stimuli are positioned at the screen’s

left or right edges. However, as we could not establish a ground truth for the true looking

directions, the correct-looks/all-looks ratio we calculated contains some unquantifiable error:

Taking the ratio at face value, it assumes that children were looking at the attention-getter and

measured 100% minus the amount of iCatcher+’s false negatives, where children supposedly

looked toward the side of the attention-getter but were mislabeled. This assumption leaves two

sources of errors: (1) false positives, where children looked at the other side but were

mislabeled - leading us to overestimate the ratio of correct inferences (2) true negatives, where

children looked at the side without the attention-getter and were labeled correctly (as we only

calculated the number of hits on the attention-getter, these true negatives still counted as

“misses” even though iCatcher+ made the correct prediction) - leading us to underestimate the

ratio of correct inferences. While these error sources limit our ability to make exact

quantatative claims about iCatcher’s accuracy, our findings still indicate that iCatcher+

provides robust inference for the looking direction on a frame-by-frame basis. Interestingly,

we found a clear bias towards right looks in iCatcher+’s predictions across the trials we

measured, which was not explainable by a target side bias of our included trials. Considering

we found no significant bias in our calibration trials, this leaves two explanations for this

finding: (1) Participants did, in fact, look more towards the right in cases with no clear looking

direction indicated (2) iCatcher+ exhibits a right bias in cases where looks fall further toward

the center (as compared to our calibration trials). Given our data, we cannot argue for or

against either of these two options. While this bias did not systematically influence the

outcome of our hypotheses, it is still worth looking into possible biases of iCatcher+ with

different datasets in further research, as it will paint a more accurate picture of its potential

shortcomings.
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Comparing WebGazer vs. iCatcher+

As we expected, we found no significant difference when comparing the mean looking

scores between WebGazer and iCatcher+ on the same sample. Using the mean looking score

as a proxy for tracking performance, we can claim that WebGazer and iCatcher+ did not differ

in their performance when evaluating goal-based action predictions in our setup. However, as

we have tested for a non-difference, our confidence in the test’s result depends on the

statistical power. Performing a power analysis on the paired t-test using alpha = 0.05, a power

of 0.95, and our sample size of 45 (the number of participants that provided data for both gaze

coders) reveals that the effect size of the difference would need to be at least Cohen’s d = .50.

Hence, we would have been unable to detect a difference with a small to medium-sized effect.

While our results provide no evidence for a difference in performance between the two gaze

coding technologies, we cannot confidently reject the existence of one either.

Testing the exclusion rate difference for both trackers on a participant level also did

not yield a significant difference. This result is to be expected, as most exclusions that affected

all trials of participants happened during data collection independent of a specific gaze coder’s

properties. However, we had to visually inspect and exclude a sizable proportion of

WebGazer’s trials, resulting in a significantly lower included trial proportion for WebGazer.

Our finding suggests that if one wants to maximize for included trials, iCatcher+ will provide

a higher number of usable trials. Notably, this comparison is skewed in favor of iCatcher+, as

we did not apply as strict quality control on its output as we did with WebGazer.

Other than performance and exclusion rate, additional considerations must be made

when choosing WebGazer or iCatcher+ for a remote study. iCatcher+ differentiates between

participants looking to the right, looking to the left, and looking away. If a study design

requires more complex measures, WebGazer is desirable, as it can infer x/y locations of gazes

on the screen. However, in practice, it still needs to be shown that WebGazer provides

accuracy for infants that is suitable to support more than 2 AOIs, as our study only included 2

AOIs placed on the left and the right of the screen. As WebGazer functions in real-time while

iCatcher+ conducts its analyses post-hoc, the general tradeoffs of these approaches apply here:
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WebGazer can provide better privacy as tracking happens on-device and can be configured to

test for calibration quality before starting an experiment; iCatcher+ performance is not limited

by the capabilities of the participant’s device. Furthermore, WebGazer requires a calibration

procedure to be present at the time of testing to work. In contrast, iCatcher+ simplifies study

procedures as the calibration can be omitted. As we have shown in this study, iCatcher+ can

even be used to analyze videos that were not originally intended to be analyzed with it, as it

works on arbitrary webcam recordings. Lastly, we expect studies using iCatcher+ to have an

edge in the visual inspection of the output for coding quality, even if stricter rules than ours are

applied. The binary nature of the output makes it easier for humans to evaluate its correctness,

making the evaluation of the output quality faster and more objective compared to WebGazer.

Agreement Between WebGazer and iCatcher+

Both WebGazer and iCatcher+ provided data that shows goal-based action predictions

across the remote sample, thereby showing agreement on a cohort level. However, the results

of finer-grained measures of agreement between the two methods need to be discussed. We

compared the judgments on looking sides at singular timestamps during various time

windows. As to be expected, the agreement in the timeframe after the chaser exited the tunnel

was higher compared to the anticipatory period, as children watching the action on screen had

a clearer looking bias that was easier to capture for both coding methods. Moreover, the

agreement was generally higher when only considering moments where an AOI for WebGazer

was hit, as “none”-hits during the selected timeframes were likely the result of data noise.

However, the overall values for Cohen’s kappa were quite low (> .6 is considered substantial

agreement). This low level of agreement is unlikely to be an artifact of the granularity of the

data points compared, as the calculated intra-class correlation for aggregated looking scores

per participant was also poor. These results raise questions about the reliability of one or both

of these tools. While both were able to replicate the findings by Schuwerk, Kampis, et

al. (2022) on a cohort level, they showed very low agreement scores on a per-timestamp and

participant level. A large part of this disparity can be attributed to a temporal offset between

the predictions of the two gaze coding methods observable in Figure 5. The looking score

graphs show that WebGazer’s predictions lag behind the predictions of iCatcher+ by
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approximately one second. The graph suggests that a timestamp recorded by the two gaze

coders likely does not refer to the same time points in real-world time, suggesting they are

about one second apart. We discuss this offset further in the next section. In addition to the

offset, other factors likely play a role in the low agreement scores, as participant-level looking

scores should not be affected as strongly by the offset alone. Furthermore, there are long time

periods in the stimuli that would induce a clear, continuous looking bias, so the overlap of

looking predictions should still be considerable even with the offset (e.g., the 8 seconds after

the chaser exits the tunnel). Another such factor is the high level of noise that webcam-based

gaze coding introduces: Gazes falling closer to the center of the scene have a high chance of

being classified as the opposite site due to a high area of uncertainty present in the coding

algorithms. Given the extent of the disagreement, further causes need to be investigated.

While these investigations fall outside of the scope of this thesis, a closer look at participants

with a particularly low agreement, comparisons with other datasets, and study designs that

include a ground truth (manual or using eye-trackers) will help to pinpoint other causes for the

disagreement.

Temporal Offset Between iCatcher+ and WebGazer

Figure 5 shows a temporal offset in gaze predictions between the WebGazer data

collected by Steffan, Zimmer, et al. (2023) and our reanalysis using iCatcher+. Due to this

thesis’s initial goal and scope limitations, we did not provide exact quantification of this offset,

nor have we performed statistical analysis. Thus, we base our assumptions on the observable

time difference of approximately one second (Figure 5). It is strongly indicated that the timing

of the iCatcher+ predictions is close to the actual gaze timing, as (1) we have synced the video

length to the stimulus runtime and (2) the visual inspection of the graph is plausible, e.g., the

looking score immediately maximizes as soon as the anticipatory period ends. For this

discussion, we, therefore, assume that WebGazer is lagging behind by approximately one

second. As previously highlighted, this offset likely artificially lowers the observed agreement

scores between WebGazer and iCatcher+. This shift also affects the overall looking score

determined by WebGazer. As we had no ground truth to compare the tracked points against

and could not determine the exact amount of the shift, we could not correct the WebGazer data
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before analysis. Therefore, we need to assume that up to one second of the measured

anticipatory period contained gaze data from before the actual anticipatory period when the

chaser was still positioned in the middle of the screen. We assume that this mismatch leads us

to underestimate the mean looking score derived from WebGazer, as the missing last second

of the anticipatory period likely had a stronger target looking bias compared to the added

second of the chaser standing in the middle (Figure 5). We argue that the results of our

hypothesis tests are unlikely to have changed due to this timing difference, but the overall

interpretability of our findings is lowered.

There are several possible explanations for this delay. The offset is unlikely a core

issue of WebGazer, as the original publication tested WebGazer in parallel with lab

eye-trackers and would have noticed any such issues (Papoutsaki et al., 2016). The next

possible source of error is the implementation of WebGazer running in jsPsych v6.3.1 (de

Leeuw, 2015). In version v6.3.0, bugs in the implementation of WebGazer caused timing

issues, which were addressed in v6.3.1 (Molter, 2021). However, it was not specified how

much this patch improved the timing and if further timing issues remained. Another aspect

that could have caused the delay was that the experiment’s software recorded the participant’s

video in parallel while tracking was happening. This addition is the most likely cause of the

delay, as it was a significant change to the computational load and is exclusive to our setup,

potentially delaying the arrival of new webcam frames for WebGazer to analyze. Future work

could explicitly check this possibility by testing our setup with and without the recording

running while comparing the outcome data of adult participants who were instructed to look at

stimuli the same way both times. If the delay is not present in the data generated without

recordings, this experiment will provide evidence that the recording caused the delay. Lastly,

our preprocessing of the WebGazer data could have accidentally introduced this shift. We

deem this source to be unlikely, as the artifact at the beginning of the graph in Figure 5

suggests that the delay was already present during tracking time: The graph shows a strong

mean looking tendency towards the distractor aoi directly at the beginning of the stimulus

runtime. As the target sides were balanced between stimuli, this tendency is unlikely to have

happened randomly. In our pseudorandomized trial orders (Order A - LR, LL, RR, RL; Order
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B - RL, RR, LL, LR.), the locations of the target and distractor AOIs switched between each

trial. As the timing of the gaze points was delayed by one second, the initial gaze points of a

new trial fell to the location of the previous trial’s target, which always becomes a distractor in

the next trial. This spilled-over gaze data results in the artifact found in Figure 5 and would

have most likely happened during recording time, as trial data was preprocessed separately per

trial. While the origin might be non-obvious, investigating the cause of the delay and

quantifying it through separate experiments will be important to better understand the

tradeoffs inherent to using WebGazer inside jsPsych.

Limitations

In addition to the shortcomings highlighted in the previous sections, we must discuss

other limitations of our study.

As both this study and Steffan, Zimmer, et al. (2023) compared their data to the in-lab

sample, we used the same stimulus material featuring a 4:3 aspect ratio. Most computers

today have a widescreen aspect ratio of 16:9, so the stimulus did not fully fill up the screen’s

width but left borders on both sides of the video. Therefore, we suspect that our data leads us

to underestimate the potential of webcam-based methods compared to commercial

eye-trackers: Newer paradigms that use the full width of the screen would be less susceptible

to the noise created by webcam-based eye-tracking methods, as head- and eye-movements

grow more pronounced when focusing objects on the edges of the screen.

Our comparison between WebGazer and iCatcher+ is skewed in favor of WebGazer in

four ways due to how we collected data and performed exclusions: (1) WebGazer performed

real-time gaze inference on the participants’ devices during data collection. This

resource-intensive process could have negatively affected video recording quality as both

tracking and recording competed for processor time. Thus, the video quality available to

iCatcher+ could have been higher if only the video recording had occurred, making

predictions more accurate. (2) We believe that the real-time tracking sometimes led to

software crashes during the experiment, causing data loss and the subsequent exclusion of the

participant. As we could not differentiate a tracking-related crash from, e.g., a general network
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error, we had to group these reasons under “no data” in the global exclusions. However, this

approach meant that some exclusions caused by WebGazer were also attributed to iCatcher+

in our analysis, as its exclusions were comprised of the global and iCatcher+-specific

exclusions. If WebGazer had not run during the study, iCatcher+ might have had more

participant videos to analyze, meaning that our study overestimated the exclusion rate for

iCatcher+. (3) A calibration sequence was necessary for WebGazer to work, lengthening the

experiment’s duration and possibly deteriorating the infant’s attentiveness during the trial

video presentation. If a study were to exclusively use iCatcher+ for gaze coding, such a

sequence would not be necessary. (4) We excluded trials for the WebGazer sample if we

deemed the tracking performance subpar during the visual inspection, mirroring the approach

of Steffan, Zimmer, et al. (2023). In contrast, we did not implement quality-based exclusions

for iCatcher+. Our findings are, therefore, not generalizable in comparing the absolute

performance of WebGazer and iCatcher+, but can only be used to make claims about the

comparison between iCatcher+ and our pipeline that includes both WebGazer and the manual

checks. We argue that an approach like ours depicts a realistic use case of the tool in a

research setting. However, interpreting our findings in the context of using regular WebGazer

for infants samples would result in an inflated estimate of the overall performance.

When performing the visual inspection to check the quality of WebGazer’s tracking

and children’s attentiveness, Steffan, Zimmer, et al. (2023) used two researchers for a portion

of the videos and reported a Cohen’s kappa value to quantify the agreement between both

raters. We could not fully reuse the exclusion check ratings provided by the original study’s

data, as we split the previously established exclusion criteria between global and

coder-specific criteria. When translating the exclusion ratings to our new format, a single rater

had to make decisions in edge cases: e.g., when previous exclusion checks did not specify

whether the exclusion was based on unattentiveness (global in the new system) or WebGazer

tracking quality (specific in the new system). While the agreement value reported by Steffan,

Zimmer, et al. (2023) should still serve as a rough estimate, we cannot make exact claims

about our new exclusion criteria’s objectivity or reliability.

As previously discussed, our study lacked a ground truth for the actual gaze locations
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of the participants during the experiment. Establishing a ground truth for WebGazer would

have had to happen during data collection by simultaneously running a hardware eye-tracker.

While that setup would have provided insightful data on the absolute accuracy achievable in

webcam-based eye-tracking with infants, it would have been resource intensive and was

deemed out of the scope of our original study. In contrast, establishing a ground truth for

iCatcher+ would still have been possible post-hoc. iCatcher+ labels gazes towards the screen

as either “left” or “right” and was trained and evaluated on human-labeled data, where raters

looked at footage frames at a time and provided the corresponding label. To generate a ground

truth for iCatcher+ from our sample, we also could have manually coded each frame of the

participant’s videos. We then could have used that ground truth to estimate the accuracy of

iCatcher+ across our sample, providing an independent evaluation of iCatcher+. However, we

deemed this resource-intensive coding process out of this thesis’ scope.

WebGazer estimates x/y coordinates and would, in theory, be desirable over iCatcher+

in situations where more fine-grained gaze inference is needed (> 2 AOIs). However, the noisy

nature of WebGazers tracking inherently limits the number of on-screen locations that can be

confidently differentiated, bringing into question whether WebGazer can provide reliable data

in situations with four or more AOIs - especially when working with infants. As our present

study only features two AOIs, we cannot make confident claims about the viability of

WebGazer for more complex paradigms. Additional experiments that include a greater number

of AOIs need to be conducted to get a more generalized image of WebGazer’s usefulness in

infant research. We have previously discussed the limitations posed by the small sample size

of the reanalyzed subset of participants, lowering the interpretability of our findings.

The diversity of our included sample is lacking, exclusively featuring children from

Germany, Austria, the UK, and the US. This lack of diversity reduces the generability of our

results. Certain eye shapes could significantly affect the performance of one or both of our

tracking methods, but our study cannot make claims about these differences. Furthermore,

children’s cultural context can impact their visual perception of scenes (e.g., Nisbett &

Miyamoto, 2005), thereby affecting the anticipatory-looking behavior in our paradigm. Since

webcam-based gaze coding can drive more diverse samples as it reduces the cost of testing,
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carefully considering such issues in future research is vital. A more detailed discussion of the

complete sample’s limitations can be found in Steffan, Zimmer, et al. (2023).

OWLET

Werchan et al. (2022) presented OWLET, an infant-focused webcam-based

eye-tracking system that uses a calibration procedure and post-hoc processing to infer x/y

gaze coordinates on a screen from webcam recordings. OWLET achieves remarkable

accuracy, reporting a mean absolute x/y deviation of 3.36°/2.67°. For comparison, the

best-performing inference model of WebGazer achieved an average error of 4.17° in an adult

sample (Papoutsaki et al., 2016). This accuracy advantage would establish OWLET as the first

choice to perform webcam-based eye-tracking in infant studies. Thus, we initially planned to

include OWLET in this thesis through a post-hoc analysis similar to the one performed via

iCatcher+. However, we ran into various issues when analyzing our data using OWLET,

leading us to drop the tracker from our study. The following section documents these issues.

Both installation methods provided by the authors failed for our setup. The binary

distribution accompanying the publication targets macOS exclusively but does not support

computers built with the recently introduced Apple Silicon hardware, crashing at startup on

these devices. The Anaconda environment definition accompanying the source code requires

platform-specific versions of its dependencies, causing crashes when setting up the

environment on a platform that deviates from the one on which the authors developed the

software. Creating a new Python 3.9 environment and using pip to install the packages

imported in the source code manually resulted in a working installation.

Next, OWLET makes certain assumptions about the input videos and the screen

dimensions on which the stimuli are displayed. Participant videos are required to have a

framerate of 30 FPS or higher for the code to work. As many common built-in webcams have

an upper framerate limit of 30 FPS (25 FPS being common for PAL countries), choosing this

value as a lower limit suggests an inflated sampling rate. We adjusted the code to accept

videos of arbitrary fixed FPS to fit the videos we recorded during our experiment.

Furthermore, the software assumes webcam recordings to fit a 16:9 aspect ratio. Different
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webcams provide a wide range of aspect ratios for their recordings, so we cropped our input

videos to match this ratio. OWLET assumes that stimulus material is presented at a resolution

of 960:540 in fullscreen and scales its output coordinates to that resolution. We rescaled the

output to fit our stimulus material; however, due to the hardcoded resolution, OWLET

inherently assumes a 16:9 aspect ratio for stimulus material presentation, slightly skewing the

results on screens that did not match that aspect ratio. Lastly, OWLET assumes that the

calibration video features points at the screen’s leftmost, rightmost, uppermost, and lowermost

points. The 9-point calibration we presented during testing fulfills this assumption but differs

from the exact one used by the authors during their initial testing.

After applying our changes to the codebase to OWLET, we ran it to perform post-hoc

eye-tracking on our sample videos. However, when looking at the resulting x/y coordinates,

we witnessed a mean bias towards the right of the stimulus center across the entire sample.

We can assume that certain parts of the tracking worked correctly, as we observed tracking

points across the entire stimulus width, and, in a beeswarm plot, the gaze points were reacting

to the actions displayed in the scene, albeit shifted to the right on average. While our changes

to OWLET were minor, there is a possibility that our changes, the calibration deviations, or

our postprocessing introduced this error. We, therefore, conservatively assume that our usage

of the tool caused the bias and do not use our data to question the testing results obtained by

Werchan et al. (2022). Still, some indicators exist that signal that the error could stem from

OWLET’s implementation: The original paper visualized their point of gaze estimations on a

validation sequence using a heatmap (Fig. 6 original paper). A bias can be observed in that

visualization, which the authors did not comment on. Interstingly, the gaze points shown in

the original paper seem to be shifted to the left, while we witnessed a mean bias towards the

right. When surveying the code base for OWLET, we found that the code exhibited properties

of a work-in-progress prototype, with large sections of code commented out, duplicate code,

unused function arguments, and hardcoded magic numbers. These programming practices are

known to increase the occurrence of software bugs (Cairo et al., 2018), possibly introducing

the unintended bias we witnessed.

To make definitive claims about the performance of OWLET in an independent test,
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we would need to collect data with the original calibration and assumptions met. If the biases

continue to exist in the tracking data gathered from this sample, another examination of the

source code could aid in correcting these issues. While we could not provide estimates on the

tracking performance of OWLET, our experience indicates that the usability of OWLET in a

real study setting has room for improvement.

Future Research

This section will detail future research areas that will be relevant in establishing

webcam-based eye-tracking in infant research.

Datasets. We have previously highlighted that we cannot judge the absolute

performance of WebGazer due to a missing ground truth regarding the actual gaze locations.

The absence of these data points not only hinders studies like ours but also slows the

development of newer (post-hoc processing) tracking tools for infants. Whenever a tool is

developed, a new set of evaluation data must be collected to demonstrate the method’s

accuracy. Both established evaluation methods have drawbacks in this small scale: If gaze

locations are compared to an attention-getter’s position (e.g., Werchan et al., 2022), noise is

introduced into the dataset, as children might not look at the attention-getter. If hardware

eye-trackers are run simultaneously to provide data for comparison (e.g., Papoutsaki et al.,

2016), the collection process becomes resource intensive. A large, publicly available, and

reusable dataset of infant videos annotated with gaze locations would therefore facilitate the

development and evaluation of newer infant-centered eye-tracking methods. Such a dataset

also makes research viable that incrementally improves gaze coders. An example of such an

improvement would be the one between iCatcher (Erel, Potter, et al., 2022) and iCatcher+

(Erel, Shannon, et al., 2022), where the authors could focus on improving the gaze

classification model instead of collecting a new evaluation data set. Datasets like these would

also benefit the overarching research on webcam-based eye trackers for infants, as they could

serve as a benchmark to objectively compare different tracking solutions.

Similar datasets exist. For infants, the dataset used to train iCatcher originally

collected on Lookit (Scott & Schulz, 2017) is publicly available, containing human-coded
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“left”, “right”, and “away” labels for the video frames (https://osf.io/5u9df/). For adults,

Krafka et al. (2016) introduced GazeCapture, a dataset containing 1450 adults and almost

2.5M frames annotated with x/y gaze coordinates. They collected this data via a mobile

application, presenting pulsating red circles as attention-getters at various points and recording

the face through the device’s front camera. Collecting this kind of dataset for young children

will pose challenges, as infants cannot be easily instructed to look at certain points during

recording, potentially generating mislabeled data. The optimal way to collect such a dataset

would be to present various stimuli on a screen while recording a video of the infant’s face and

the gaze location using a hardware-based eye-tracking device. The x/y coordinate output of

the dedicated eye-tracking systems would give the most accurate estimate of the real gaze

position, but this process would be resource intensive. A more practical approach would likely

involve two steps: First, in-lab eye-trackers would be used to carefully develop and validate

stimulus materials that compel infants to look at a maximum amount of different screen points

without losing focus. This stimuli material will then be presented to infants while recording

their faces, where the validated sequence of looking locations now serves as a ground truth for

looks. This way of data collection can occur remotely using participants’ devices and provides

a tradeoff between resource intensiveness and data accuracy. Regardless of the collection

method, creating such datasets will likely involve a collaborative effort across multiple

research groups. It is generally more challenging to recruit large numbers of children

compared to adults, and the dataset would ideally feature children from a diverse range of

ethnic, racial, and cultural backgrounds. Collaborative projects like ManyBabies (Visser et al.,

2022) and large-scale data collection platforms like Lookit (Scott & Schulz, 2017) will likely

play a key role in capturing large and diverse datasets for developing webcam-based

eye-tracking technologies.

Deep Learning. A large dataset containing video frames annotated with x/y

coordinates also opens up the possibility of employing more sophisticated end-to-end deep

learning models in the gaze inference process. iCatcher+ demonstrated the power of these

models for calibration-less binary gaze classification on infants and Valliappan et al. (2020)

used deep-learning to infer x/y pixel coordinates with an viewing angle of .6–1° in adults.

https://osf.io/5u9df/
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While WebGazer uses the calibration to learn the connection between eye features and gaze

location from scratch for every participant, the approach by Valliappan et al. (2020) uses a

model pre-trained on a large sample of annotated data and utilizes the calibration to finetune

the model for the specific participant. Copying the architecture presented by Valliappan et al.

(2020) and training it on an infant dataset could already yield promising results for

coordinate-level webcam-eye-tracking.

Calibration. While we adapted the WebGazer calibration present in jsPsych v6.3.1 to

be more child friendly by displaying an animated attention-getter and playing sounds, we

believe that calibration procedures of webcam-based eye-trackers for infants have room

further for improvement. We argue that there are two areas in which calibrations can be

improved: (1) the content of the calibration and (2) the type of data the calibration collects. (1)

Compared to adults, young children cannot as easily be instructed to keep their heads still and

focus on specific points during the calibration procedure. Compelling stimuli must be used to

direct children’s attention and prevent them from looking away, thereby maximizing the

usable data points gained during calibration. Thus, there has been ongoing research to

improve calibration contents for lab eye-trackers with infants (e.g., Schlegelmilch & Wertz,

2019 ; Zeng et al., 2023) and children (e.g., Špakov et al., 2018). It will be vital for

webcam-based eye trackers to incorporate these findings and adapt them where unique

properties of webcam-based technologies arise. (2) WebGazer assumes that calibration points

are always focused when recording the corresponding eye features (Papoutsaki et al., 2016). If

this assumption holds, the calibration sequence produces a large number of data points to fit

the model used to infer gaze locations. However, this assumption does not necessarily hold

with infants, lowering the tracking performance in practical settings. As an alternative

approach, OWLET uses the calibration only to learn the outer bounds of the screen by

measuring how far the pupils move inside the eyes’ bounding boxes when looking at the edges

of the screen (Werchan et al., 2022). The tracker then uses that information to map pupil

positions inside the eyes’ bounding box to screen coordinates. Bounding-based approaches

like OWLET’s are much more robust to interferences during the calibration process (e.g., the

child looks away for a portion), as they only need to gather four data points for threshold
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values. This robustness is especially important for infants not diligently focussing on all

calibration points. However, this approach limits the sophistication of the internal

representation of the relationship between webcam images and gaze locations, lowering the

theoretically achievable tracking performance. Depending on the impact of unattentiveness

during the calibration process on data quality, either of the approaches can lead to more

accurate gaze predictions. Further research is needed to investigate this relationship to inform

the decision on what data to extract when performing calibration with infants.

Hybrid models. In our study, we examined two extremes of data output granularity:

WebGazer attempted to provide pixel-level coordinates while iCatcher+ only differentiated

“left”, “right”, and “away”. Both approaches have downsides, as WebGazer requires extensive

calibration data, and its real accuracy for infants is unknown in practice, while iCatcher+

cannot be used for studies requiring more than 2 AOIs. An alternative approach would be a

middle ground between both granularities, splitting the screen into a grid (e.g., 2x2 or 3x3)

and inferring a gaze’s grid cell. This results in a simplification of the gaze inference model, as

it now only needs to learn the relationship between eye features and a small number of labels

instead of the entire range of x/y pixel coordinates. This simplification reduces the amount of

data that needs to be collected during calibration and lowers the amount of training data

required if deep learning models are used for inference. Given a sufficiently large training set,

one could forgo the need for calibration entirely for this simpler task, similar to how iCatcher+

needs no calibration. The downside to such an approach would be that gazes falling on cell

borders could be misclassified and that fine-grained tracking of gaze movements would no

longer be possible. However, these limitations also apply to regular trackers with low spatial

accuracy, which do not openly communicate this but seem to provide pixel-level coordinates.

A tracker that reliably predicts grid positions instead of x/y coordinates would clearly

communicate its spatial accuracy limitations and thereby inform the experimental designs it is

used in.

User-friendliness. For open-source webcam-based eye-tracking tools to reach

widespread adoption in infant research, they have to provide easy-to-use interfaces for

researchers looking to incorporate them into their studies. We found that current methods are
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lacking in this regard: WebGazer is available as a plugin for the jsPsych framework for

running online experiments, but programming knowledge is needed to implement experiments

and preprocess the resulting data. iCatcher+ is available as a Python package and provides a

command line interface, but knowledge in dealing with the command line and Python

environments is required to use it, making it inaccessible to many researchers. The authors

share this sentiment (Erel, Shannon, et al., 2022). OWLET attempts to make its

implementation easily accessible to researchers by providing a graphical user interface, but

installation issues and inflexible assumptions about the input data hinder usability, as

previously described. In addition to usability issues, the distribution and installation of these

programs pose an additional challenge. Webcam-based eye-tracking technologies developed

by researchers often use Python to leverage a large repository of image-processing

functionality (e.g., OWLET, iCatcher+). However, creating binary distributions for Python

programs that do not require a Python installation is often a cumbersome process. To

effectively distribute these programs, the algorithms will often need to be reimplemented in

languages that make it easier to create distributable binaries. However, this process can

introduce deviations between the algorithm prototyped in Python and its reimplementation.

This risk is one aspect of an issue commonly called the “two language problem”. A

continuous, collaborative effort between researchers and software engineers will be required

to solve problems regarding usability and distribution and make these tracking solutions

accessible to the research community.

Conclusion

Webcam gaze coding is a promising technology that could make research with infants

cheaper, more accessible, and more diverse. Researchers must be aware of the tradeoffs

between traditional and webcam-based approaches when choosing gaze coding methodologies

for their studies. If they decide to use webcam-based technologies, the tradeoffs between

different paradigms (post-hoc vs. real-time, eye-tracking vs. binary gaze coding) need to be

surveyed to fit the requirements provided by their experiment. Our analysis of previously

collected data demonstrated that both WebGazer and iCatcher+ are viable tools for testing

anticipatory looking paradigms in a remote setting. However, both exhibited significantly
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lower looking scores than the in-lab sample, suggesting that researchers using the tools will

need to collect larger samples than in-lab eye-tracking technologies to counteract the noise

introduced. Our direct comparisons between WebGazer and iCatcher+ were inconclusive and

require further investigation. Similarily, the timing difference between WebGazer and

iCatcher+ needs to be examined in future experiments. To fully establish webcam-based gaze

coding methods in infant studies, additional research must be conducted in various areas.

These areas include large-scale dataset collection, deep learning, calibration optimization,

hybrid models, and user-friendliness. Contributing work in these areas will equip researchers

with novel and flexible tools that help us answer pressing questions about early childhood

development.
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Table 1

An overview of the mean looking scores broken down by

stimulus and gaze coding technology.

FAM_LL FAM_LR FAM_RL FAM_RR

iCatcher+ 0.55 0.68 0.59 0.62

WebGazer 0.62 0.59 0.55 0.54

In-Lab 0.84 0.57 0.76 0.80
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Table 2

The absolute number of included trials, divided by stimulus

and gaze coding technology.

FAM_LL FAM_LR FAM_RL FAM_RR

iCatcher+ 56 55 53 56

WebGazer 41 41 37 42

In-Lab 67 66 32 37
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Table 3

The Cohen’s kappa agreement scores between WebGazer and iCatcher+ when comparing the

gaze direction the coders predicted. Values are differentiated by timeframe (during the critial

period vs. after the critical period vs. from the start of the critical period to the end of the video)

and the data points included (all vs. only those where WebGazer registered an AOI hit)

Points included During Critical Timeframe After Critical Timeframe During & After

WebGazer AOI hit 0.13 0.65 0.50

All 0.08 0.58 0.41
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Figure 1

An overview of the scene featured in the stimulus material. At the start, both agents are posi-

tioned above the the fence.
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Figure 2

The scene during the anticipatory period. Colored regions mark the dimension of the (counter-

balanced) AOIs we used for our analyses of WebGazer data. "Target AOI" refers to the region

where the chaser reappeared in accordance with their action goal. "Distractor AOI" refers

to the region covering the other tunnel exit and its surroundings. (Dimensions relative to the

stimulus video: Left AOI: x: 0% - 45%, y: 0% - 66%; Right AOI: x: 55% - 100%, y: 0% -

66%).
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Figure 3

A stillframe captured from a beeswarm plot visulalization of WebGazer. Each blue dot repre-

sents an infered gaze location of a participant. The red dot repersents the mean gaze coordi-

nates of all gazes that fell onto the stimulus material. The white circle is a visualization of the

current standard deviation of the displayed gazepoints.
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Figure 4

A stillframe captured from a visualization of iCatcher+ data during the anticipatory perior of

a right-targetted stimulus. In this visualization, a side was displayed brighter the higher the

proportion of looks towards that direction was across the entire sample.
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Figure 5

A plot visualizing iCatchers’s and WebGazer’s mean looking scores across the sample (y-axis)

over the video duration (x-axis). It shows that the gaze coding technology was successful

in showing action-related looking: At the beginning, no clear side is indicated by the action,

resulting in chance-level looking scores. Once the chasee exits the tunnel at 18 seconds, the first

bias towards the target side can be seen (peak in graph). The following valley is caused by the

chaser making a noise, drawing attention back to the screen’s center. The second peak happens

when the chasee enters the box, followed by the anticipatory period (marked by vertical lines),

which shows a weaker bias towards the target. When the chaser exits the tunnel to reunite with

the chasee at 31 seconds, the looking scores are maximized, as nearly all children are focused

on the interaction. The horizontal line shows the chance level looking score. For WebGazer

specifically, one can observe a timing delay compared to iCatcher+ as well as an artifact at t

= 0 caused by this delay.

0 10000 20000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time since Stimulus Video Start (ms)

Sa
m

pl
e'

s 
M

ea
n 

Lo
ok

in
g 

Sc
or

e

iCatcher+
WebGazer



WEBCAM-BASED GAZE CODING FOR INFANTS 60

Figure 6

A plot depicting the proportional looking score (looking time to target AOI/looking time to

target + distractor AOI) (y Axis) per gaze coding method, WebGazer, iCatcher+, and in-lab (x

Axis). The error bars represent the 95% confidence intervals.
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